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MRChem is a numerical real-space code for molecular electronic structure calculations within the self-consistent field
(SCF) approximations of quantum chemistry (Hartree-Fock and Density Functional Theory). The code is divided in
two main parts: the MultiResolution Computation Program Package (MRCPP), which is a general purpose numerical
mathematics library based on multiresolution analysis and the multiwavelet basis which provide low-scaling algorithms
as well as rigorous error control in numerical computations, and the MultiResolution Chemistry (MRChem) program
that uses the functionalities of MRCPP for computational chemistry applications.

The code is being developed at the Hylleraas Centre for Quantum Molecular Sciences at UiT - The Arctic University
of Norway.

The code is under active development, and the latest stable releases as well as development versions can be found on
GitHub.
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CHAPTER

ONE

FEATURES IN MRCHEM-1.1:

• Wave functions:
– Kohn-Sham DFT

∗ Spin-polarized

∗ Spin-unpolarized

∗ LDA, GGA and hybrid functionals

– Hartree-Fock
∗ Restricted closed-shell

∗ Unrestricted

– Explicit external fields
∗ Electric field

– Solvent effects
∗ Cavity-free PCM

• Properties:
– Ground state energy

– Dipole moment

– Quadrupole moment

– Polarizability

– Magnetizability

– NMR shielding constant

– Geometric derivative

• Parallel implementation:
– Shared memory (OpenMP): ~20 cores

– Distributed memory (MPI): ~1000 procs

– Hybrid scheme (MPI + OpenMP): ~10 000 cores

• Current size limitations:
– ~2000 orbitals on ~100 high-end compute nodes (128 core/256GiB mem)

– ~100 orbitals on a single high-memory (1TB) compute node
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CHAPTER

TWO

UPCOMING FEATURES:

• Wave functions:
– Meta-GGAs

– ZORA Hamiltonian

– Periodic Boundary Conditions

– External magnetic field

• Properties:
– Optical rotation

– Spin-spin coupling constant

– Hyperfine coupling constant

– Magnetically induced currents

– Hyperpolarizability

– Geometry optimization

• Performance:
– Reduced memory footprint

– Improved DFT scaling and performance

2.1 Installation

2.1.1 Build prerequisites

• Python-3.7 (or later)

• CMake-3.14 (or later)

• GNU-5.4 or Intel-17 (or later) compilers (C++14 standard)

Hint: We have collected the recommended modules for the different Norwegian HPC systems under tools/
<machine>.env. These files can be sourced in order to get a working environment on the respective machines, and
may also serve as a guide for other HPC systems.
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C++ dependencies

The MRChem program depends on the following C++ libraries:

• Input handling: nlohmann/json-3.6

• Multiwavelets: MRCPP-1.4

• Linear algebra: Eigen-3.4

• DFT functionals: XCFun-2.0

All these dependencies will be downloaded automatically at configure time by CMake, but can also be linked manually
by setting the variables:

MRCPP_DIR=<path_to_mrcpp>/share/cmake/MRCPP
XCFun_DIR=<path_to_xcfun>/share/cmake/XCFun
Eigen3_DIR=<path_to_eigen3>/share/eigen3/cmake
nlohmann_json_DIR=<path_to_nlohmann_json>

Python dependencies

Users only need a Python3 interpreter, which is used for configuration (setup script) as well as launching the program
(mrchem script).

Developers will need some extra Python packages to update the input parser and build the documentation locally with
Sphinx.

We strongly suggest not to install these Python dependencies globally, but rather to use a local virtual environment.
We provide a Pipfile for specifying the Python dependencies. We recommend using Pipenv, since it manages virtual
environment and package installation seamlessly. After installing it with your package manager, run:

$ pipenv install --dev

to create a virtual environment with all developer packages installed.

The environment can be activated with:

$ pipenv shell

Alternatively, any Python command can be run within the virtual environment by doing:

$ pipenv run python -c "print('Hello, world')"

2.1.2 Obtaining and building the code

The latest development version of MRChem can be found on the master branch on GitHub:

$ git clone https://github.com/MRChemSoft/mrchem.git

The released versions can be found from Git tags vX.Y.Z under the release/X.Y branches in the same repository, or
a zip file can be downloaded from Zenodo.

By default, all dependencies will be fetched at configure time if they are not already available.

6 Chapter 2. Upcoming features:
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Configure

The setup script will create a directory called <build-dir> and run CMake. There are several options available for
the setup, the most important being:

--cxx=<CXX>
C++ compiler [default: g++]

--omp
Enable OpenMP parallelization [default: False]

--mpi
Enable MPI parallelization [default: False]

--type=<TYPE>
Set the CMake build type (debug, release, relwithdebinfo, minsizerel) [default: release]

--prefix=<PATH>
Set the install path for make install [default: ‘/usr/local’]

--cmake-options=<STRING>
Define options to CMake [default: ‘’]

-h --help
List all options

The code can be built with four levels of parallelization:

• no parallelization

• only shared memory (OpenMP)

• only distributed memory (MPI)

• hybrid OpenMP + MPI

Note: In practice we recommend the shared memory version for running on your personal laptop/workstation, and
the hybrid version for running on a HPC cluster. The serial and pure MPI versions are only useful for debugging.

The default build is without parallelization and using GNU compilers:

$ ./setup --prefix=<install-dir> <build-dir>

To use Intel compilers you need to specify the --cxx option:

$ ./setup --prefix=<install-dir> --cxx=icpc <build-dir>

To build the code with shared memory (OpenMP) parallelization, add the --omp option:

$ ./setup --prefix=<install-dir> --omp <build-dir>

To build the code with distributed memory (MPI) parallelization, add the --mpi option and change to the respective
MPI compilers (--cxx=mpicxx for GNU and --cxx=mpiicpc for Intel):

$ ./setup --prefix=<install-dir> --omp --mpi --cxx=mpicxx <build-dir>

When dependencies are fetched at configuration time, they will be downloaded into <build-dir>/_deps. For the
example of MRCPP, sources are saved into the folders <build-dir>/_deps/mrcpp_sources-src and built into
<build-dir>/_deps/mrcpp_sources-build.

2.1. Installation 7
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Note: If you compile the MRCPP library manually as a separate project, the level of parallelization must be the same
for MRCPP and MRChem. Similar options apply for the MRCPP setup, see mrcpp.readthedocs.io.

Build

If the CMake configuration is successful, the code is compiled with:

$ cd <build-dir>
$ make

Test

A test suite is provided to make sure that everything compiled properly. To run a collection of small unit tests:

$ cd <build-dir>
$ ctest -L unit

To run a couple of more involved integration tests:

$ cd <build-dir>
$ ctest -L integration

Install

After the build has been verified with the test suite, it can be installed with the following command:

$ cd <build-dir>
$ make install

This will install two executables under the <install-path>:

<install-path>/bin/mrchem # Python input parser and launcher
<install-path>/bin/mrchem.x # MRChem executable

Please refer to the User’s Manual for instructions for how to run the program.

Hint: We have collected scripts for configure and build of the hybrid OpenMP + MPI version on the differ-
ent Norwegian HPC systems under tools/<machine>.sh. These scripts will build the current version under
build-${version}, run the unit tests and install under install-${version}, e.g. to build version v1.0.0 on Fram:

$ cd mrchem
$ git checkout v1.0.0
$ tools/fram.sh

The configure step requires internet access, so the scripts must be run on the login nodes, and it will run on a single
core, so it might take some minutes to complete. The scripts will not install the Python dependencies, so this must be
done manually in order to run the code.

8 Chapter 2. Upcoming features:
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2.2 User’s Manual

The MRChem program comes as two executables:

<install-path>/bin/mrchem # Python input parser and launcher
<install-path>/bin/mrchem.x # MRChem main executable

where the former is a Python script that reads and validates the user input file and produces a new program input file
which is then passed as argument to the latter, which is the actual C++ executable.

The input and output of the program is thus organized as three separate files:

File extension Description Format
.inp User input file GETKW/JSON
.json Program input/output JSON
.out User output file Text

The name of the user input file can be anything, as long as it has the .inp extension, and the corresponding .json and
.out files will get the same name prefix. The JSON program file will get both an "input" and an "output" section.
This "input" section is rather detailed and contains very implementation specific keywords, but it is automatically
generated by the mrchem script, based on the more generic keywords of the user input file. The mrchem script will
further launch the mrchem.x main executable, which will produce the text output file as well as the "output" section
of the JSON in/out file. The contents of all these files will be discussed in more detail in the sections below.

2.2.1 Running the program

In the following we will assume to have a valid user input file for the water molecule called h2o.inp, e.g. like this

world_prec = 1.0e-4

WaveFunction {
method = B3LYP

}

Molecule {
$coords
O 0.0000 0.000 -0.125
H -1.4375 0.000 1.025
H 1.4375 0.000 1.025
$end
}

To run the calculation, pass the file name (without extension) as argument to the mrchem script (make sure you under-
stand the difference between the .inp, .json and .out file, as described in the previous section):

$ mrchem h2o

This will under the hood actually do the following two steps:

$ mrchem h2o.inp > h2o.json
$ mrchem.x h2o.json > h2o.out

2.2. User’s Manual 9
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The first step includes input validation, which means that everything that passes this step is a well-formed computation.

Dry-running the input parser

The execution of the two steps above can be done separately by dry-running the parser script:

$ mrchem --dryrun h2o

This will run only the input validation part and generate the h2o.json program input, but it will not launch the main
executable mrchem.x. This can then be done manually in a subsequent step by calling:

$ mrchem.x h2o.json

This separation can be useful for instance for developers or advanced users who want to change some automatically
generated input values before launching the actual program, see Input schema.

Printing to standard output

By default the program will write to the text output file (.out extension), but if you rather would like it printed in the
terminal you can add the --stdout option (then no text output file is created):

$ mrchem --stdout h2o

Reproducing old calculations

The JSON in/out file acts as a full record of the calculation, and can be used to reproduce old results. Simply pass the
JSON file once more to mrchem.x, and the "output" section will be overwritten:

$ mrchem.x h2o.json

User input in JSON format

The user input file can be written in JSON format instead of the standard syntax which is described in detail below.
This is very convenient if you have for instance a Python script to generate input files. The water example above in
JSON format reads (the coords string is not very elegant, but unfortunately that’s just how JSON works. . . ):

{
"world_prec": 1.0e-4,
"WaveFunction": {
"method": "B3LYP"

},
"Molecule": {
"coords": "O 0.0000 0.000 -0.125\nH -1.4375 0.000 1.025\nH 1.4375 0.000 1.025\

→˓n"
}

}

which can be passed to the input parser with the --json option:

10 Chapter 2. Upcoming features:
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$ mrchem --json h2o

Note: A user input file in JSON format must NOT be confused with the JSON in/out file for the mrchem.x program.
The file should still have a .inp extension, and contain all the same keywords which have to be validated and translated
by the mrchem script into the .json program input file.

Parallel execution

The MRChem program comes with support for both shared memory and distributed memory parallelization, as well as
a hybrid combination of the two. In order to activate these capabilities, the code needs to be compiled with OpenMP
and/or MPI support (--omp and/or --mpi options to the CMake setup script, see Installation instructions).

Shared memory OpenMP

For the shared memory part, the program will automatically pick up the number of threads from the environment
variable OMP_NUM_THREADS. If this variable is not set it will usually default to the maximum available. So, to run the
code on 16 threads (all sharing the same physical memory space):

$ OMP_NUM_THREADS=16 mrchem h2o

Distributed memory MPI

In order to run a program in an MPI parallel fashion, it must be executed with an MPI launcher like mpirun, mpiexec,
srun, etc. Note that it is only the main executable mrchem.x that should be launched in parallel, not the mrchem input
parser script. This can be achieved either by running these separately in a dry-run (here two MPI processes):

$ mrchem --dryrun h2o
$ mpirun -np 2 mrchem.x h2o.json

or in a single command by passing the launcher string as argument to the parser:

$ mrchem --launcher="mpirun -np 2" h2o

This string can contain any argument you would normally pass to mpirun as it will be literally prepended to the
mrchem.x command when the mrchem script executes the main program.

Hint: For best performance, it is recommended to use shared memory within each NUMA domain (usually one
per socket) of your CPU, and MPI across NUMA domains and ultimately machines. Ideally, the number of OpenMP
threads should be between 8-20. E.g. on hardware with two sockets of 16 cores each, use OMP_NUM_THREADS=16
and scale the number of MPI processes by the size of the molecule, typically one process per ~5 orbitals or so (and
definitely not more than one process per orbital).

2.2. User’s Manual 11
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Job example (Betzy)

This job will use 4 compute nodes, with 12 MPI processes on each, and the MPI process will use up to 15 OpenMP
threads. 4 MPI process per node are used for the “Bank”. The Bank processes are using only one thread, therefore
there is in practice no overallocation. It is however important that bank_size is set to be at least 4*4 = 16 (it is by default
set, correctly, to one third of total MPI size, i.e. 4*12/3=16). It would also be possible to set 16 tasks per node, and set
the bank size parameter accordingly to 8*4=32. The flags are optimized for the OpenMPI (foss) library on Betzy (note
that H2O is a very small molecule for such setup!).

#!/bin/bash -l
#SBATCH --nodes=4
#SBATCH --tasks-per-node=12

export UCX_LOG_LEVEL=ERROR
export OMP_NUM_THREADS=15

~/my_path/to/mrchem --launcher='mpirun --rank-by node --map-by socket --bind-to numa --
→˓oversubscribe' h2o

--rank-by node
Tells the system to place the first MPI rank on the first node, the second MPI rank on the second node, until the
last node, then start at the first node again.

--map-by socket
Tells the system to map (group) MPI ranks according to socket before distribution between nodes. This will
ensure that for example two bank cores will access different parts of memory and be placed as the 16th thread of
a numa group.

--bind-to numa
Tells the system to bind cores to one NUMA (Non Uniform Memory Access) group. On Betzy memory configu-
ration groups cores by groups of 16, with cores in the same group having the same access to memory (other cores
will have access to that part of the memory too, but slower). That means that a process will only be allowed to use
one of the 16 cores of the group. (The operating system may change the core assigned to a thread/process and,
without precautions, it may be assigned to any other core, which would result in much reduced performance).
The 16 cores of the group may then be used by the threads initiated by that MPI process.

--oversubscribe
To tell MPI that it is should accept that the number of MPI processes times the number of threads is larger than
the number of available cores.

Advanced option: Alternatively one can get full control of task placement using the Slurm workload manager by
replacing mpirun with srun and setting explicit CPU masks as:

~/my_path/to/mrchem --launcher='srun --cpu-bind=mask_cpu:0xFFFE00000000, \\
0xFFFE000000000000000000000000,0xFFFE000000000000,0xFFFE0000000000000000000000000000, \\
0xFFFE,0xFFFE0000000000000000,0xFFFE0000,0xFFFE00000000000000000000,0x10000, \\
0x100000000000000000000,0x100000000,0x1000000000000000000000000 \\
--distribution=cyclic:cyclic' h2o

--cpu-bind=mask_cpu:0xFFFE00000000,0xFFFE000000000000000000000000,... give the core (or cpu)
masks the process have access to. 0x means that the number is in hexadecimal. For example 0xFFFE00000000 is
111111111111111000000000000000000000000000000000 in binary, meaning that the first process can not use the
first 33 cores, then it can use the cores from position 34 up to position 48, and nothing else.

--distribution=cyclic:cyclic The first cyclic will put the first rank on the first node, the second rank on the
second node etc. The second cyclic distribute the ranks withing the nodes.

12 Chapter 2. Upcoming features:
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More examples can be found in the mrchem-examples repository on GitHub.

Parallel pitfalls

Warning: Parallel program execution is not a black box procedure, and the behavior and efficiency of the run
depends on several factors, like hardware configuration, operating system, compiler type and flags, libraries for
OpenMP and MPI, type of queing system on a shared cluster, etc. Please make sure that the program runs correctly
on your system and is able to utilize the computational resources before commencing production calculations.

Typical pitfalls for OpenMP

• Not compiling with correct OpenMP support.

• Not setting number of threads correctly.

• Hyper-threads: the round-robin thread distribution might fill all hyper-threads on each core before moving on
to the next physical core. In general we discourage the use of hyper-threads, and recommend a single thread per
physical core.

• Thread binding: all threads may be bound to the same core, which means you can have e.g. 16 threads com-
peting for the limited resources available on this single core (typically two hyper-threads) while all other cores
are left idle.

Typical pitfalls for MPI

• Not compiling with the correct MPI support.

• Default launcher options might not give correct behavior.

• Process binding: if a process is bound to a core, then all its spawned threads will also be bound to the same
core. In general we recommend binding to socket/NUMA.

• Process distribution: in a multinode setup, all MPI processes might land on the same machine, or the round-
robin procedure might count each core as a separate machine.

How to verify a parallel MRChem run

• In the printed output, verify that MRCPP has actually been compiled with correct support for MPI and/or
OpenMP:

----------------------------------------------------------------------

MRCPP version : 1.2.0
Git branch : master
Git commit hash : 686037cb78be601ac58b
Git commit author : Stig Rune Jensen
Git commit date : Wed Apr 8 11:35:00 2020 +0200

Linear algebra : EIGEN v3.3.7
Parallelization : MPI/OpenMP

----------------------------------------------------------------------

2.2. User’s Manual 13
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• In the printed output, verify that the correct number of processes and threads has been detected:

----------------------------------------------------------------------

MPI processes : (no bank) 2
OpenMP threads : 16
Total cores : 32

----------------------------------------------------------------------

• Monitor your run with top to see that you got the expected number of mrchem.x processes (MPI), and that they
actually run at the expected CPU percentage (OpenMP):

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
9502 stig 25 5 489456 162064 6628 R 1595,3 2,0 0:14.50 mrchem.x
9503 stig 25 5 489596 162456 6796 R 1591,7 2,0 0:14.33 mrchem.x

• Monitor your run with htop to see which core/hyper-thread is being used by each process. This is very useful to
get the correct binding/pinning of processes and threads. In general you want one threads per core, which means
that every other hyper-thread should remain idle. In a hybrid MPI/OpenMP setup it is rather common that each
MPI process becomes bound to a single core, which means that all threads spawned by this process will occupy
the same core (possibly two hyper-threads). This is then easily detected with htop.

• Perform dummy executions of your parallel launcher (mpirun, srun, etc) to check whether it picks up the correct
parameters from the resource manager on your cluster (SLURM, Torque, etc). You can then for instance report
bindings and host name for each process:

$ mpirun --print-rank-map hostname

Play with the launcher options until you get it right. Note that Intel and OpenMPI have slightly different options
for their mpirun and usually different behavior. Beware that the behavior can also change when you move from
single- to multinode execution, so it is in general not sufficient to verify you runs on a single machine.

• Perform a small scaling test on e.g. 1, 2, 4 processes and/or 1, 2, 4 threads and verify that the total computation
time is reduced as expected (don’t expect 100% efficiency at any step).

2.2.2 User input file

The input file is organized in sections and keywords that can be of different type. Input keywords and sections are
case-sensitive, while values are case-insensitive.

Section {
keyword_1 = 1 # int
keyword_2 = 3.14 # float
keyword_3 = [1, 2, 3] # int array
keyword_4 = foo # string
keyword_5 = true # boolean

}

Valid options for booleans are true/false, on/off or yes/no. Single word strings can be given without quotes (be
careful of special characters, like slashes in file paths). A complete list of available input keywords can be found in the
User input reference.

14 Chapter 2. Upcoming features:
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Top section

The main input section contain four keywords: the relative precision 𝜖𝑟𝑒𝑙 that will be guaranteed in the calculation and
the size, origin and unit of the computational domain. The top section is not specified by name, just write the keywords
directly, e.g

world_prec = 1.0e-5 # Overall relative precision
world_size = 5 # Size of domain 2^{world_size}
world_unit = bohr # Global length unit
world_origin = [0.0, 0.0, 0.0] # Global gauge origin

The relative precision sets an upper limit for the number of correct digits you are expected to get out of the computation
(note that 𝜖𝑟𝑒𝑙 = 10−6 yields 𝜇 Ha accuracy for the hydrogen molecule, but only mHa accuracy for benzene).

The computational domain is always symmetric around the origin, with total size given by the world_size parameter
as [2𝑛]3, e.i. world_size = 5 gives a domain of [−16, 16]3. Make sure that the world is large enough to allow the
molecular density to reach zero on the boundary. The world_size parameter can be left out, in which case the size
will be estimated based on the molecular geometry. The world_unit relates to all coordinates given in the input file
and can be one of two options: angstrom or bohr.

Note: The world_size will be only approximately scaled by the angstrom unit, by adding an extra factor of 2
rather than the appropriate factor of ~1.89. This means that e.g. world_size = 5 ([−16, 16]3) with world_unit =
angstrom will be translated into [−32, 32]3 bohrs.

Precisions

MRChem uses a smoothed nuclear potential to avoid numerical problems in connection with the 𝑍/|𝑟−𝑅| singularity.
The smoothing is controlled by a single parameter nuc_prec that is related to the expected error in the energy due to
the smoothing. There are also different precision parameters for the construction of the Poisson and Helmholtz integral
operators.

Precisions {
nuclear_prec = 1.0e-6 # For construction of nuclear potential
poisson_prec = 1.0e-6 # For construction of Poisson operators
helmholtz_prec = 1.0e-6 # For construction of Helmholtz operatos

}

By default, all precision parameters follow world_prec and usually don’t need to be changed.

Printer

This section controls the format of the printed output file (.out extension). The most important option is the
print_level, but it also gives options for number of digits in the printed output, as well as the line width (defaults
are shown):

Printer {
print_level = 0 # Level of detail in the printed output
print_width = 75 # Line width (in characters) of printed output
print_prec = 6 # Number of digits in floating point output

}

Note that energies will be printed with twice as many digits. Available print levels are:

2.2. User’s Manual 15
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• print_level=-1 no output is printed

• print_level=0 prints mainly properties

• print_level=1 adds timings for individual steps

• print_level=2 adds memory and timing information on OrbitalVector level

• print_level=3 adds details for individual terms of the Fock operator

• print_level=4 adds memory and timing information on Orbital level

• print_level>=5 adds debug information at MRChem level

• print_level>=10 adds debug information at MRCPP level

MPI

This section defines some parameters that are used in MPI runs (defaults shown):

MPI {
bank_size = -1 # Number of processes used as memory bank
numerically_exact = false # Guarantee MPI invariant results
share_nuclear_potential = false # Use MPI shared memory window
share_coulomb_potential = false # Use MPI shared memory window
share_xc_potential = false # Use MPI shared memory window

}

The memory bank will allow larger molecules to get though if memory is the limiting factor, but it will be slower,
as the bank processes will not take part in any computation. For calculations involving exact exchange (Hartree-Fock
or hybrid DFT functionals) a memory bank is required whenever there’s more than one MPI process. A negative
bank size will set it automatically based on the number of available processes. For pure DFT functionals on smaller
molecules it is likely more efficient to set bank_size = 0, otherwise it’s recommended to use the default. If a particular
calculation runs out of memory, it might help to increase the number of bank processes from the default value.

The numerically_exact keyword will trigger algorithms that guarantee that the computed results are invariant
(within double precision) with respect to the number or MPI processes. These exact algorithms require more memory
and are thus not default. Even when the numbers are not MPI invariant they should be correct and identical within the
chosen world_prec.

The share_potential keywords are used to share the memory space for the particular functions between all processes
located on the same physical machine. This will save memory but it might slow the calculation down, since the shared
memory cannot be “fast” memory (NUMA) for all processes at once.

Basis

This section defines the polynomial MultiWavelet basis

Basis {
type = Interpolating # Legendre or Interpolating
order = 7 # Polynomial order of MW basis

}

The MW basis is defined by the polynomial order 𝑘, and the type of scaling functions: Legendre or Interpolating poly-
nomials (in the current implementation it doesn’t really matter which type you choose). Note that increased precision

16 Chapter 2. Upcoming features:
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requires higher polynomial order (use e.g 𝑘 = 5 for 𝜖𝑟𝑒𝑙 = 10−3, and 𝑘 = 13 for 𝜖𝑟𝑒𝑙 = 10−9, and interpolate in
between). If the order keyword is left out it will be set automatically according to

𝑘 = −1.5 * 𝑙𝑜𝑔10(𝜖𝑟𝑒𝑙)

The Basis section can usually safely be omitted in the input.

Molecule

This input section specifies the geometry (given in world_unit units), charge and spin multiplicity of the molecule,
e.g. for water (coords must be specified, otherwise defaults are shown):

Molecule {
charge = 0 # Total charge of molecule
multiplicity = 1 # Spin multiplicity
translate = false # Translate CoM to world_origin

$coords
O 0.0000 0.0000 0.0000 # Atomic symbol and coordinate
H 0.0000 1.4375 1.1500 # Atomic symbol and coordinate
H 0.0000 -1.4375 1.1500 # Atomic symbol and coordinate
$end
}

Since the computational domain is always cubic and symmetric around the origin it is usually a good idea to translate
the molecule to the origin (as long as the world_origin is the true origin).

WaveFunction

Here we give the wavefunction method and whether we run spin restricted (alpha and beta spins are forced to occupy
the same spatial orbitals) or not (method must be specified, otherwise defaults are shown):

WaveFunction {
method = <wavefunction_method> # Core, Hartree, HF or DFT
restricted = true # Spin restricted/unrestricted

}

There are currently four methods available: Core Hamiltonian, Hartree, Hartree-Fock (HF) and Density Functional
Theory (DFT). When running DFT you can either set one of the default functionals in this section (e.g. method =
B3LYP), or you can set method = DFT and specify a “non-standard” functional in the separate DFT section (see below).
See User input reference for a list of available default functionals.

Note: Restricted open-shell wavefunctions are not supported.
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DFT

This section can be omitted if you are using a default functional, see above. Here we specify the exchange-correlation
functional used in DFT (functional names must be specified, otherwise defaults are shown)

DFT {
spin = false # Use spin-polarized functionals
density_cutoff = 0.0 # Cutoff to set XC potential to zero

$functionals
<func1> 1.0 # Functional name and coefficient
<func2> 1.0 # Functional name and coefficient
$end
}

You can specify as many functionals as you want, and they will be added on top of each other with the given coefficient.
Both exchange and correlation functionals must be set explicitly, e.g. SLATERX and VWN5C for the standard LDA
functional. For hybrid functionals you must specify the amount of exact Hartree-Fock exchange as a separate functional
EXX (EXX 0.2 for B3LYP and EXX 0.25 for PBE0 etc.). Option to use spin-polarized functionals or not. Unrestricted
calculations will use spin-polarized functionals by default. The XC functionals are provided by the XCFun library.

Properties

Specify which properties to compute. By default, only the ground state SCF energy as well as orbital energies will be
computed. Currently the following properties are available (all but the dipole moment are false by default)

Properties {
dipole_moment = true # Compute dipole moment
quadrupole_moment = false # Compute quadrupole moment
polarizabiltity = false # Compute polarizability
magnetizability = false # Compute magnetizability
nmr_shielding = false # Compute NMR shieldings
geometric_derivative = false # Compute geometric derivative
plot_density = false # Plot converged density
plot_orbitals = [] # Plot converged orbitals

}

Some properties can be further specified in dedicated sections.

Warning: The computation of the molecular gradient suffers greatly from numerical noise. The code replaces the
nucleus-electron attraction with a smoothed potential. This can only partially recover the nuclear cusps, even with
tight precision. The molecular gradient is only suited for use in geometry optimization of small molecules and with
tight precision thresholds.
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Polarizability

The polarizability can be computed with several frequencies (by default only static polarizability is computed):

Polarizability {
frequency = [0.0, 0.0656] # List of frequencies to compute

}

NMRShielding

For the NMR shielding we can specify a list of nuclei to compute (by default all nuclei are computed):

NMRShielding {
nuclear_specific = false # Use nuclear specific perturbation operator
nucleus_k = [0,1,2] # List of nuclei to compute (-1 computes all)

}

The nuclear_specific keyword triggers response calculations using the nuclear magnetic moment operator instead
of the external magnetic field. For small molecules this is not recommended since it requires a separate response calcula-
tion for each nucleus, but it might be beneficial for larger systems if you are interested only in a single shielding constant.
Note that the components of the perturbing operator defines the row index in the output tensor, so nuclear_specific
= truewill result in a shielding tensor which is the transpose of the one obtained with nuclear_specific = false.

Plotter

The plot_density and plot_orbitals properties will use the Plotter section to specify the parameters of the plots
(by default you will get a cube plot on the unit cube):

Plotter {
path = plots # File path to store plots
type = cube # Plot type (line, surf, cube)
points = [20, 20, 20] # Number of grid points
O = [-4.0,-4.0,-4.0] # Plot origin
A = [8.0, 0.0, 0.0] # Boundary vector
B = [0.0, 8.0, 0.0] # Boundary vector
C = [0.0, 0.0, 8.0] # Boundary vector

}

The plotting grid is computed from the vectors O, A, B and C in the following way:

1. line plot: along the vector A starting from O, using points[0] number of points.

2. surf plot: on the area spanned by the vectors A and B starting from O, using points[0] and points[1] points
in each direction.

3. cube plot: on the volume spanned by the vectors A, B and C starting from O, using points[0], points[1] and
points[2] points in each direction.

The above example will plot on a 20x20x20 grid in the volume [-4,4]^3, and the generated files (e.g. plots/phi_1_re.
cube) can be viewed directly in a web browser by blob , like this benzene orbital:
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SCF

This section specifies the parameters for the SCF optimization of the ground state wavefunction.

SCF solver

The optimization is controlled by the following keywords (defaults shown):

SCF {
run = true # Run SCF solver
kain = 5 # Length of KAIN iterative subspace
max_iter = 100 # Maximum number of SCF iterations
rotation = 0 # Iterations between diagonalize/localize
localize = false # Use canonical or localized orbitals
start_prec = -1.0 # Dynamic precision, start value
final_prec = -1.0 # Dynamic precision, final value
orbital_thrs = 10 * world_prec # Convergence threshold orbitals
energy_thrs = -1.0 # Convergence threshold energy

}
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If run = false no SCF is performed, and the properties are computed directly on the initial guess wavefunction.

The kain (Krylov Accelerated Inexact Newton) keyword gives the length of the iterative subspace accelerator (similar
to DIIS). The rotation keyword gives the number of iterations between every orbital rotation, which can be either
localization or diagonalization, depending on the localize keyword. The first two iterations in the SCF are always
rotated, otherwise it is controlled by the rotation keyword (usually this is not very important, but sometimes it fails
to converge if the orbitals drift too far away from the localized/canonical forms).

The dynamic precision keywords control how the numerical precision is changed throughout the optimization. One
can choose to use a lower start_prec in the first iterations which is gradually increased to final_prec (both are
equal to world_prec by default). Note that lower initial precision might affect the convergence rate.

In general, the important convergence threshold is that of the orbitals, and by default this is set one order of magnitude
higher than the overall world_prec. For simple energy calculations, however, it is not necessary to converge the
orbitals this much due to the quadratic convergence of the energy. This means that the number of correct digits in the
total energy will be saturated well before this point, and one should rather use the energy_thrs keyword in this case
in order to save a few iterations.

Note: It is usually not feasible to converge the orbitals beyond the overall precision world_prec due to numerical
noise.

Initial guess

Several types of initial guess are available:

• core and sad requires no further input and computes guesses from scratch.

• chk and mw require input files from previous MW calculations.

• cube requires input files computed from other sources.

The core and sad guesses are computed by diagonalizing the Hamiltonian matrix using a Core or Superposition of
Atomic Densities (SAD) Hamiltonian, respectively. The matrix is constructed in a small AO basis with a given “zeta
quality”, which should be added as a suffix in the keyword. Available AO bases are hydrogenic orbitals of single sz,
double dz, triple tz and quadruple qz zeta size.

The SAD guess can also be computed in a small GTO basis (3-21G), using the guess type sad_gto. In this case another
input keyword guess_screen becomes active for screening in the MW projection of the Gaussians. The screening
value is given in standard deviations. Such screening will greatly improve the efficiency of the guess for large systems.
It is, however, not recommended to reduce the value much below 10 StdDevs, as this will have the opposite effect on
efficiency due to introduction of discontinuities at the cutoff point, which leads to higher grid refinement. sad_gto is
usually the preferred guess both for accuracy and efficiency, and is thus the default choice.

The core and sad guesses are fully specified with the following keywords (defaults shown):

SCF {
guess_prec = 1.0e-3 # Numerical precision used in guess
guess_type = sad_gto # Type of inital guess (chk, mw, cube, core_XX,␣

→˓sad_XX)
guess_screen = 12.0 # Number of StdDev before a GTO is set to zero␣

→˓(sad_gto)
}
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Checkpointing

The program can dump checkpoint files at every iteration using the write_checkpoint keyword (defaults shown):

SCF {
path_checkpoint = checkpoint # Path to checkpoint files
write_checkpoint = false # Save checkpoint files every iteration

}

This allows the calculation to be restarted in case it crashes e.g. due to time limit or hardware failure on a cluster. This
is done by setting guess_type = chk in the subsequent calculation:

SCF {
guess_type = chk # Type of inital guess (chk, mw, cube, core_XX,␣

→˓sad_XX)
}

In this case the path_checkpoint must be the same as the previous calculation, as well as all other parameters in the
calculation (Molecule and Basis in particular).

Write orbitals

The converged orbitals can be saved to file with the write_orbitals keyword (defaults shown):

SCF {
path_orbitals = orbitals # Path to orbital files
write_orbitals = false # Save converged orbitals to file

}

This will make individual files for each orbital under the path_orbitals directory. These orbitals can be used as
starting point for subsequent calculations using the guess_type = mw initial guess:

SCF {
guess_prec = 1.0e-3 # Numerical precision used in guess
guess_type = mw # Type of inital guess (chk, mw, cube, core_XX,␣

→˓sad_XX)
}

Here the orbitals will be re-projected onto the current MW basis with precision guess_prec. We also need to specify
the paths to the input files:

Files {
guess_phi_p = initial_guess/phi_p # Path to paired MW orbitals
guess_phi_a = initial_guess/phi_a # Path to alpha MW orbitals
guess_phi_b = initial_guess/phi_b # Path to beta MW orbitals

}

Note that by default orbitals are written to the directory called orbitals but the mw guess reads from the directory
initial_guess (this is to avoid overwriting the files by default). So, in order to use MW orbitals from a previous
calculation, you must either change one of the paths (SCF.path_orbitals or Files.guess_phi_p etc), or manually
copy the files between the default locations.

Note: The mw guess must not be confused with the chk guess, although they are similar. The chk guess will blindly read
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in the orbitals that are present, regardless of the current molecular structure and computational setup (if you run with a
different computational domain or MW basis type/order the calculation will crash). The mw guess will re-project the old
orbitals onto the new computational setup and populate the orbitals based on the new molecule (here the computation
domain and MW basis do not have to match).

Response

This section specifies the parameters for the SCF optimization of the linear response functions. There might be several
independent response calculations depending on the requested properties, e.g.

Polarizability {
frequency = [0.0, 0.0656] # List of frequencies to compute

}

will run one response for each frequency (each with three Cartesian components), while

Properties {
magnetizability = true # Compute magnetizability
nmr_shielding = true # Compute NMR shieldings

}

will combine both properties into a single response calculation, since the perturbation operator is the same in both cases
(unless you choose NMRShielding.nuclear_specific = true, in which case there will be a different response for
each nucleus).

Response solver

The optimization is controlled by the following keywords (defaults shown):

Response {
run = [true,true,true] # Run response solver [x,y,z] direction
kain = 5 # Length of KAIN iterative subspace
max_iter = 100 # Maximum number of SCF iterations
localize = false # Use canonical or localized orbitals
start_prec = -1.0 # Dynamic precision, start value
final_prec = -1.0 # Dynamic precision, final value
orbital_thrs = 10 * world_prec # Convergence threshold orbitals

}

Each linear response calculation involves the three Cartesian components of the appropriate perturbation operator. If
any of the components of run is false, no response is performed in that particular direction, and the properties are
computed directly on the initial guess response functions (usually zero guess).

The kain (Krylov Accelerated Inexact Newton) keyword gives the length of the iterative subspace accelerator (similar
to DIIS). The localize keyword relates to the unperturbed orbitals, and can be set independently of the SCF.localize
keyword.

The dynamic precision keywords control how the numerical precision is changed throughout the optimization. One
can choose to use a lower start_prec in the first iterations which is gradually increased to final_prec (both are
equal to world_prec by default). Note that lower initial precision might affect the convergence rate.

For response calculations, the important convergence threshold is that of the orbitals, and by default this is set one order
of magnitude higher than the overall world_prec.
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Note: The quality of the response property depends on both the perturbed as well as the unperturbed orbitals, so they
should be equally well converged.

Initial guess

The following initial guesses are available:

• none start from a zero guess for the response functions.

• chk and mw require input files from previous MW calculations.

By default, no initial guess is generated for the response functions, but the chk and mw guesses work similarly as for
the SCF.

Checkpointing

The program can dump checkpoint files at every iteration using the write_checkpoint keyword (defaults shown):

Response {
path_checkpoint = checkpoint # Path to checkpoint files
write_checkpoint = false # Save checkpoint files every iteration

}

This allows the calculation to be restarted in case it crashes e.g. due to time limit or hardware failure on a cluster. This
is done by setting guess_type = chk in the subsequent calculation:

Response {
guess_type = chk # Type of inital guess (none, chk, mw)

}

In this case the path_checkpoint must be the same as the previous calculation, as well as all other parameters in the
calculation (Molecule and Basis in particular).

Write orbitals

The converged response orbitals can be saved to file with the write_orbitals keyword (defaults shown):

Response {
path_orbitals = orbitals # Path to orbital files
write_orbitals = false # Save converged orbitals to file

}

This will make individual files for each orbital under the path_orbitals directory. These orbitals can be used as
starting point for subsequent calculations using the guess_type = mw initial guess:

Response {
guess_prec = 1.0e-3 # Numerical precision used in guess
guess_type = mw # Type of inital guess (chk, mw, cube, core_XX,␣

→˓sad_XX)
}
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Here the orbitals will be re-projected onto the current MW basis with precision guess_prec. We also need to specify
the paths to the input files (only X for static perturbations, X and Y for dynamic perturbations):

Files {
guess_X_p = initial_guess/X_p # Path to paired MW orbitals
guess_X_a = initial_guess/X_a # Path to alpha MW orbitals
guess_X_b = initial_guess/X_b # Path to beta MW orbitals
guess_Y_p = initial_guess/Y_p # Path to paired MW orbitals
guess_Y_a = initial_guess/Y_a # Path to alpha MW orbitals
guess_Y_b = initial_guess/Y_b # Path to beta MW orbitals

}

Note that by default orbitals are written to the directory called orbitals but the mw guess reads from the directory
initial_guess (this is to avoid overwriting the files by default). So, in order to use MW orbitals from a previ-
ous calculation, you must either change one of the paths (Response.path_orbitals or Files.guess_X_p etc), or
manually copy the files between the default locations.

2.2.3 User input reference

• Keywords without a default value are required.

• Default values are either explicit or computed from the value of other keywords in the input.

• Sections where all keywords have a default value can be omitted.

• Predicates, if present, are the functions run to validate user input.

Keywords
world_prec

Overall relative precision in the calculation.

Type float
Predicates

• 1.0e-10 < value < 1.0

world_size
Total size of computational domain given as 2**(world_size). Always cubic and symmetric
around the origin. Negative value means it will be computed from the molecular geometry.

Type int
Default -1
Predicates

• value <= 10

world_unit
Length unit for all coordinates given in user input. Everything will be converted to atomic units
(bohr) before the main executable is launched, so the JSON input is always given in bohrs.

Type str
Default bohr
Predicates

• value.lower() in ["bohr", "angstrom"]
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world_origin
Global gauge origin of the calculation.

Type List[float]
Default [0.0, 0.0, 0.0]

Predicates
• len(value) == 3

Sections
Precisions

Define specific precision parameters.

Keywords
exchange_prec

Precision parameter used in construction of Exchange operators. Negative value
means it will follow the dynamic precision in SCF.

Type float
Default -1.0

helmholtz_prec
Precision parameter used in construction of Helmholtz operators. Negative value
means it will follow the dynamic precision in SCF.

Type float
Default -1.0

poisson_prec
Precision parameter used in construction of Poisson operators.

Type float
Default user['world_prec']
Predicates

• 1.0e-10 < value < 1.0

nuclear_prec
Precision parameter used in smoothing and projection of nuclear potential.

Type float
Default user['world_prec']
Predicates

• 1.0e-10 < value < 1.0

Printer
Define variables for printed output.

Keywords
print_level

Level of detail in the written output. Level 0 for production calculations,
negative level for complete silence.

Type int
Default 0
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print_mpi
Write separate output from each MPI to file called
<file_name>-<mpi-rank>.out.

Type bool
Default False

print_prec
Number of digits in property output (energies will get twice this number of
digits).

Type int
Default 6
Predicates

• 0 < value < 10

print_width
Line width of printed output (in number of characters).

Type int
Default 75
Predicates

• 50 < value < 100

print_constants
Print table of physical constants used by MRChem.

Type bool
Default False

Plotter
Give details regarding the density and orbital plots. Three types of plots are available, line,
surface and cube, and the plotting ranges are defined by three vectors (A, B and C) and an origin
(O): line: plots on line spanned by A, starting from O. surf: plots on surface spanned by A
and B, starting from O. cube: plots on volume spanned by A, B and C, starting from O.

Keywords
path

File path to plot directory.

Type str
Default plots
Predicates

• value[-1] != '/'

type
Type of plot: line (1D), surface (2D) or cube (3D).

Type str
Default cube
Predicates

• value.lower() in ['line', 'surf', 'cube']

2.2. User’s Manual 27



MRChem Documentation

points
Number of points in each direction on the cube grid.

Type List[int]
Default [20, 20, 20]

Predicates
• all(p > 0 for p in value)

• not (user['Plotter']['type'] == 'line' and len(value)
< 1)

• not (user['Plotter']['type'] == 'surf' and len(value)
< 2)

• not (user['Plotter']['type'] == 'cube' and len(value)
< 3)

O
Origin of plotting ranges.

Type List[float]
Default [0.0, 0.0, 0.0]

Predicates
• len(value) == 3

A
First boundary vector for plot.

Type List[float]
Default [1.0, 0.0, 0.0]

Predicates
• len(value) == 3

B
Second boundary vector for plot.

Type List[float]
Default [0.0, 1.0, 0.0]

Predicates
• len(value) == 3

C
Third boundary vector for plot.

Type List[float]
Default [0.0, 0.0, 1.0]

Predicates
• len(value) == 3

MPI
Define MPI related parameters.

Keywords
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numerically_exact
This will use MPI algorithms that guarantees that the output is invariant wrt
the number of MPI processes.

Type bool
Default False

shared_memory_size
Size (MB) of the MPI shared memory blocks of each shared function.

Type int
Default 10000

share_nuclear_potential
This will use MPI shared memory for the nuclear potential.

Type bool
Default False

share_coulomb_potential
This will use MPI shared memory for the Coulomb potential.

Type bool
Default False

share_xc_potential
This will use MPI shared memory for the exchange-correlation potential.

Type bool
Default False

bank_size
Number of MPI processes exclusively dedicated to manage orbital bank.

Type int
Default -1

Basis
Define polynomial basis.

Keywords
order

Polynomial order of multiwavelet basis. Negative value means it will be set
automatically based on the world precision.

Type int
Default -1

type
Polynomial type of multiwavelet basis.

Type str
Default interpolating
Predicates

• value.lower() in ['interpolating', 'legendre']
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Derivatives
Define various derivative operators used in the code.

Keywords
kinetic

Derivative used in kinetic operator.

Type str
Default abgv_55

h_b_dip
Derivative used in magnetic dipole operator.

Type str
Default abgv_00

h_m_pso
Derivative used in paramagnetic spin-orbit operator.

Type str
Default abgv_00

Molecule
Define molecule.

Keywords
charge

Total charge of molecule.

Type int
Default 0

multiplicity
Spin multiplicity of molecule.

Type int
Default 1
Predicates

• value > 0

translate
Translate coordinates such that center of mass coincides with the global gauge
origin.

Type bool
Default False

coords
Coordinates in xyz format. Atoms can be given either using atom symbol or
atom number

Type str
WaveFunction

Define the wavefunction method.

Keywords
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method
Wavefunction method. See predicates for valid methods. hf, hartreefock
and hartree-fock all mean the same thing, while lda is an alias for svwn5.
You can set a non-standard DFT functional (e.g. varying the amount of exact
exchange) by choosing dft and specifing the functional(s) in the DFT section
below.

Type str
Predicates

• value.lower() in ['core', 'hartree', 'hf',
'hartreefock', 'hartree-fock', 'dft', 'lda', 'svwn3',
'svwn5', 'pbe', 'pbe0', 'bpw91', 'bp86', 'b3p86',
'b3p86-g', 'blyp', 'b3lyp', 'b3lyp-g', 'olyp', 'kt1',
'kt2', 'kt3']

restricted
Use spin restricted wavefunction.

Type bool
Default True

environment
Set method for treatment of environment. none for vacuum calculation. PCM
for Polarizable Continuum Model, which will activate the PCM input section
for further parametrization options.

Type str
Default none
Predicates

• value.lower() in ['none', 'pcm']

DFT
Define the exchange-correlation functional in case of DFT.

Keywords
density_cutoff

Hard cutoff for passing density values to XCFun.

Type float
Default 0.0

functionals
List of density functionals with numerical coefficient. E.g. for PBE0 EXX
0.25, PBEX 0.75, PBEC 1.0, see XCFun documentation <https://xcfun.
readthedocs.io/>_.

Type str
Default `` ``

spin
Use spin separated density functionals.

Type bool
Default not(user['WaveFunction']['restricted'])
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Properties
Provide a list of properties to compute (total SCF energy and orbital energies are always com-
puted).

Keywords
dipole_moment

Compute dipole moment.

Type bool
Default True

quadrupole_moment
Compute quadrupole moment. Note: Gauge origin dependent, should be used
with translate = true in Molecule.

Type bool
Default False

polarizability
Compute polarizability tensor.

Type bool
Default False

magnetizability
Compute magnetizability tensor.

Type bool
Default False

nmr_shielding
Compute NMR shielding tensor.

Type bool
Default False

geometric_derivative
Compute geometric derivative.

Type bool
Default False

plot_density
Plot converged electron density.

Type bool
Default False

plot_orbitals
Plot converged molecular orbitals from list of indices, negative index plots all
orbitals.

Type List[int]
Default []

ExternalFields
Define external electromagnetic fields.
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Keywords
electric_field

Strength of external electric field.

Type List[float]
Default []
Predicates

• len(value) == 0 or len(value) == 3

Polarizability
Give details regarding the polarizability calculation.

Keywords
frequency

List of external field frequencies.

Type List[float]
Default [0.0]

NMRShielding
Give details regarding the NMR shileding calculation.

Keywords
nuclear_specific

Use nuclear specific perturbation operator (h_m_pso).

Type bool
Default False

nucleus_k
List of nuclei to compute. Negative value computes all nuclei.

Type List[int]
Default [-1]

Files
Defines file paths used for program input/output. Note: all paths must be given in quotes if they
contain slashes “path/to/file”.

Keywords
guess_basis

File name for GTO basis set, used with gto guess.

Type str
Default initial_guess/mrchem.bas

guess_gto_p
File name for paired orbitals, used with gto guess.

Type str
Default initial_guess/mrchem.mop

guess_gto_a
File name for alpha orbitals, used with gto guess.

Type str
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Default initial_guess/mrchem.moa
guess_gto_b

File name for beta orbitals, used with gto guess.

Type str
Default initial_guess/mrchem.mob

guess_phi_p
File name for paired orbitals, used with mw guess. Expected path is
``<path_orbitals>/phi_p_scf_idx_<0. . .Np>_<re/im>.mw

Type str
Default initial_guess/phi_p

guess_phi_a
File name for alpha orbitals, used with mw guess. Expected path is
``<path_orbitals>/phi_a_scf_idx_<0. . .Na>_<re/im>.mw

Type str
Default initial_guess/phi_a

guess_phi_b
File name for beta orbitals, used with mw guess. Expected path is
``<path_orbitals>/phi_b_scf_idx_<0. . .Nb>_<re/im>.mw

Type str
Default initial_guess/phi_b

guess_x_p
File name for paired response orbitals, used with mw guess. Expected path is
``<path_orbitals>/x_p_rsp_idx_<0. . .Np>_<re/im>.mw

Type str
Default initial_guess/X_p

guess_x_a
File name for alpha response orbitals, used with mw guess. Expected path is
``<path_orbitals>/x_a_rsp_idx_<0. . .Na>_<re/im>.mw

Type str
Default initial_guess/X_a

guess_x_b
File name for beta response orbitals, used with mw guess. Expected path is
``<path_orbitals>/x_b_rsp_idx_<0. . .Nb>_<re/im>.mw

Type str
Default initial_guess/X_b

guess_y_p
File name for paired response orbitals, used with mw guess. Expected path is
``<path_orbitals>/y_p_rsp_idx_<0. . .Np>_<re/im>.mw

Type str
Default initial_guess/Y_p
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guess_y_a
File name for alpha response orbitals, used with mw guess. Expected path is
``<path_orbitals>/y_a_rsp_idx_<0. . .Na>_<re/im>.mw

Type str
Default initial_guess/Y_a

guess_y_b
File name for beta response orbitals, used with mw guess. Expected path is
``<path_orbitals>/y_b_rsp_idx_<0. . .Nb>_<re/im>.mw

Type str
Default initial_guess/Y_b

guess_cube_p
File name for paired orbitals, used with cube guess. Expected path is
``<path_orbitals>/phi_p_scf_idx_<0. . .Np>_<re/im>.cube

Type str
Default initial_guess/phi_p

guess_cube_a
File name for alpha orbitals, used with cube guess. Expected path is
``<path_orbitals>/phi_a>_scf_idx_<0. . .Na>_<re/im>.cube

Type str
Default initial_guess/phi_a

guess_cube_b
File name for beta orbitals, used with cube guess. Expected path is
``<path_orbitals>/phi_b_scf_idx_<0. . .Nb>_<re/im>.cube

Type str
Default initial_guess/phi_b

cube_vectors
Directory where cube vectors are stored for mrchem calculation.

Type str
Default cube_vectors/

SCF
Includes parameters related to the ground state SCF orbital optimization.

Keywords
run

Run SCF solver. Otherwise properties are computed on the initial orbitals.

Type bool
Default True

max_iter
Maximum number of SCF iterations.

Type int
Default 100
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kain
Length of KAIN iterative history.

Type int
Default 5

rotation
Number of iterations between each diagonalization/localization.

Type int
Default 0

localize
Use canonical or localized orbitals.

Type bool
Default False

energy_thrs
Convergence threshold for SCF energy.

Type float
Default -1.0

guess_prec
Precision parameter used in construction of initial guess.

Type float
Default 0.001
Predicates

• 1.0e-10 < value < 1.0

guess_screen
Screening parameter used in GTO evaluations, in number of standard devia-
tions. Every coordinate beyond N StdDev from the Gaussian center is evalu-
ated to zero. Note that too aggressive screening is counter productive, because
it leads to a sharp cutoff in the resulting function which requires higher grid
refinement. Negative value means no screening.

Type float
Default 12.0

start_prec
Incremental precision in SCF iterations, initial value.

Type float
Default -1.0

final_prec
Incremental precision in SCF iterations, final value.

Type float
Default -1.0

guess_type
Type of initial guess for ground state orbitals. chk restarts a previous cal-
culation which was dumped using the write_checkpoint keyword. This
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will load MRA and electron spin configuration directly from the check-
point files, which are thus required to be identical in the two calculations.
mw will start from final orbitals in a previous calculation written using the
write_orbitals keyword. The orbitals will be re-projected into the new
computational setup, which means that the electron spin configuration and
MRA can be different in the two calculations. gto reads precomputed GTO
orbitals (requires extra non-standard input files for basis set and MO coef-
ficients). core and sad will diagonalize the Fock matrix in the given AO
basis (SZ, DZ, TZ or QZ) using a Core or Superposition of Atomic Densities
Hamiltonian, respectively.

Type str
Default sad_dz
Predicates

• value.lower() in ['mw', 'chk', 'gto', 'core_sz',
'core_dz', 'core_tz', 'core_qz', 'sad_sz', 'sad_dz',
'sad_tz', 'sad_qz', 'sad_gto', 'cube']

write_checkpoint
Write orbitals to disk in each iteration, file name <path_checkpoint>/
phi_scf_idx_<0..N>. Can be used as chk initial guess in subsequent cal-
culations. Note: must be given in quotes if there are slashes in the path
“path/to/checkpoint”.

Type bool
Default False

path_checkpoint
Path to checkpoint files during SCF, used with write_checkpoint and chk
guess.

Type str
Default checkpoint
Predicates

• value[-1] != '/'

write_orbitals
Write final orbitals to disk, file name <path_orbitals>/phi_<p/a/
b>_scf_idx_<0..Np/Na/Nb>. Can be used as mw initial guess in subsequent
calculations.

Type bool
Default False

path_orbitals
Path to where converged orbitals will be written in connection with the
write_orbitals keyword. Note: must be given in quotes if there are slashes
in the path “path/to/orbitals”.

Type str
Default orbitals
Predicates

• value[-1] != '/'
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orbital_thrs
Convergence threshold for orbital residuals.

Type float
Default 10 * user['world_prec']

Response
Includes parameters related to the response SCF optimization.

Keywords
run

In which Cartesian directions to run response solver.

Type List[bool]
Default [True, True, True]

max_iter
Maximum number of response iterations.

Type int
Default 100

kain
Length of KAIN iterative history.

Type int
Default 5

property_thrs
Convergence threshold for symmetric property. Symmetric meaning the prop-
erty computed from the same operator as the response purturbation, e.g. for
external magnetic field the symmetric property corresponds to the magne-
tizability (NMR shielding in non-symmetric, since one of the operators is
external magnetic field, while the other is nuclear magnetic moment).

Type float
Default -1.0

start_prec
Incremental precision in SCF iterations, initial value.

Type float
Default -1.0

final_prec
Incremental precision in SCF iterations, final value.

Type float
Default -1.0

guess_prec
Precision parameter used in construction of initial guess.

Type float
Default 0.001
Predicates
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• 1.0e-10 < value < 1.0

guess_type
Type of initial guess for response. none will start from a zero guess for the
response functions. chk restarts a previous calculation which was dumped
using the write_checkpoint keyword. mw will start from final orbitals in
a previous calculation written using the write_orbitals keyword. The or-
bitals will be re-projected into the new computational setup.

Type str
Default none
Predicates

• value.lower() in ['none', 'chk', 'mw']

write_checkpoint
Write perturbed orbitals to disk in each iteration, file name
<path_checkpoint>/<X/Y>_rsp_<direction>_idx_<0..N>. Can
be used as chk initial guess in subsequent calculations.

Type bool
Default False

path_checkpoint
Path to checkpoint files during SCF, used with write_checkpoint and chk
guess.

Type str
Default checkpoint
Predicates

• value[-1] != '/'

write_orbitals
Write final perturbed orbitals to disk, file name <path_orbitals>/<X/
Y>_<p/a/b>_rsp_<direction>_idx_<0..Np/Na/Nb>. Can be used as
mw initial guess in subsequent calculations.

Type bool
Default False

path_orbitals
Path to where converged orbitals will be written in connection with the
write_orbitals keyword.

Type str
Default orbitals
Predicates

• value[-1] != '/'

orbital_thrs
Convergence threshold for orbital residuals.

Type float
Default 10 * user['world_prec']
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localize
Use canonical or localized unperturbed orbitals.

Type bool
Default user['SCF']['localize']

PCM
Includes parameters related to the computation of the reaction field energy of a system in an
environment within the Polarizable Continuum Model.

Sections
SCRF

Parameters for the Self-Consistent Reaction Field optimization.

Keywords
max_iter

Max number of iterations allowed in the nested procedure.

Type int
Default 100

dynamic_thrs
Set the convergence threshold for the nested procedure. true will
dynamically tighten the convergence threshold based on the abso-
lute value of the latest orbital update as. When the orbitals are
close to convergence (mo_residual < world_prec*10) the con-
vergence threshold will be set equal to world_prec. false uses
world_prec as convergence threshold throughout.

Type bool
Default True

optimizer
Choose which function to use in the KAIN solver, the surface charge
density (gamma) or the reaction potential (V_R).

Type str
Default potential
Predicates

• value.lower() in ['density', 'potential']

density_type
What part of the total molecular charge density to use in the algo-
rithm. total uses the total charge density. nuclear uses only the
nuclear part of the total charge density. electronic uses only the
electronic part of the total charge density.

Type str
Default total
Predicates

• value.lower() in ['total', 'nuclear',
'electronic']
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kain
Number of previous reaction field iterates kept for convergence ac-
celeration during the nested precedure.

Type int
Default user['SCF']['kain']

Cavity
Define the interlocking spheres cavity.

Keywords
mode

Determines how to set up the interlocking spheres cavity.
atoms: centers are taken from the molecular geometry,
radii taken from tabulated data (van der Waals radius),
and rescaled using the parameters alpha, beta and sigma
(R_i <- alpha*R_i + beta*sigma). Default spheres can be
modified and/or extra spheres added, using the $spheres
section, see documentation. explicit: centers and radii
given explicitly in the spheres block.

Type str
Default atoms
Predicates

• value.lower() in ['atoms', 'explicit']

spheres
This input parameter affects the list of spheres used to gen-
erate the cavity. In all cases, values for the radius, the ra-
dius scaling factor (alpha), the width (sigma), and the
width scaling factor (beta) can be modified. If they are
not specified their global default values are used. In atoms
mode, we modify the default list of spheres, built with cen-
ters from the molecular geometry and radii from internal
tabulated van der Waals values. To substitute a sphere, in-
clude a line like: $spheres i R [alpha] [beta] [sigma] $end
to specify that the i atom in the molecule (0-based index-
ing) should use radius R instead of the pre-tabulated vdW
radius. To add a sphere, include a line like: $spheres x y
z R [alpha] [beta] [sigma] $end to specify that a sphere of
radius R should be added at position (x, y, z). Spheres
added in this way are not aware of their parent atom, if
any. They will not contribute to the molecular gradient. In
explicit mode, we build the complete sphere list from
scratch. You can add a line like: $spheres x y z R [al-
pha] [beta] [sigma] $end to specify that a sphere of ra-
dius R should be added at position (x, y, z). Spheres
added in this way are not aware of their parent atom, if
any. They will not contribute to the molecular gradient.
Alternatively, you can specify a line like: $spheres i R [al-
pha] [beta] [sigma] $end to specify that the i atom in the
molecule (0-based indexing) should use radius R. Spheres
added in this way are aware of their parent atom. They
will contribute to the molecular gradient.
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Type str
Default ````

alpha
Scaling factor on the radius term for the cavity rescaling
(R_i <- alpha*R_i + beta*sigma). Only used for the de-
fault vdW radii in atoms mode, not if explicit $spheres
are given.

Type float
Default 1.1

beta
Scaling factor on the boundary width term for the cavity
rescaling (R_i <- alpha*R_i + beta*sigma). Only used
for the default vdW radii in atoms mode, not if explicit
$spheres are given.

Type float
Default 0.5

sigma
Width of cavity boundary, smaller value means sharper
transition.

Type float
Default 0.2

Permittivity
Parameters for the permittivity function.

Keywords
epsilon_in

Permittivity inside the cavity. 1.0 is the permittivity of free
space, anything other than this is undefined behaviour.

Type float
Default 1.0

epsilon_out
Permittivity outside the cavity. This is characteristic of the
solvent used.

Type float
Default 1.0

formulation
Formulation of the Permittivity function. Currently only
the exponential is used.

Type str
Default exponential
Predicates

• value.lower() in ['exponential']

42 Chapter 2. Upcoming features:



MRChem Documentation

Constants
Physical and mathematical constants used by MRChem

Keywords
hartree2simagnetizability

Conversion factor for magnetizability from atomic units to SI units (unit: J
T^-2). Affected code: Printed value of the magnetizability property.

Type float
Default 78.9451185

light_speed
Speed of light in atomic units (unit: au). Affected code: Relativistic
Hamiltonians (ZORA, etc.)

Type float
Default 137.035999084

angstrom2bohrs
Conversion factor for Cartesian coordinates from Angstrom to Bohr (unit:
Å^-1). Affected code: Parsing of input coordinates, printed coordinates

Type float
Default 1.8897261246257702

hartree2kjmol
Conversion factor from Hartree to kJ/mol (unit: kJ mol^-1). Affected code:
Printed value of energies.

Type float
Default 2625.4996394798254

hartree2kcalmol
Conversion factor from Hartree to kcal/mol (unit: kcal mol^-1). Affected
code: Printed value of energies.

Type float
Default 627.5094740630558

hartree2ev
Conversion factor from Hartree to eV (unit: ev). Affected code: Printed
value of energies.

Type float
Default 27.211386245988

hartree2wavenumbers
Conversion factor from Hartree to wavenumbers (unit: cm^-1). Affected
code: Printed value of frequencies.

Type float
Default 219474.6313632

fine_structure_constant
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Fine-structure constant in atomic units (unit: au). Affected code: Certain
magnetic interaction operators.

Type float
Default 0.0072973525693

electron_g_factor
Electron g factor in atomic units (unit: au). Affected code: Certain
magnetic interaction operators.

Type float
Default -2.00231930436256

dipmom_au2debye
Conversion factor for dipoles from atomic units to Debye (unit: ?).
Affected code: Printed value of dipole moments.

Type float
Default 2.5417464739297717

2.2.4 Running MRChem with QCEngine

MRChem >=1.0 can be used as a computational engine with the QCEngine program executor. QCEngine can be useful
for running calculations on large sets of molecules and input parameters. The results are collected in standardised
QCScheme format, which makes it easy to build post-processing pipelines and store data according to Findability,
Accessibility, Interoperability, and Reuse (FAIR) of digital assets principles. Furthermore, QCEngine provides different
geometry optimization drivers that can use the molecular gradient computed by MRChem for structural optimization.

Installation

The easiest way is to install both QCEngine and MRChem in a Conda environment using the precompiled version:

conda create -n mrchem-qcng mrchem qcengine qcelemental geometric optking pip -c conda-
→˓forge
conda activate mrchem-qcng
python -m pip install -U pyberny

It is also possible to use your own installation of MRChem: just make sure that the installation folder is in your PATH.

Note: If you want to use the precompiled, MPI-parallel version of MRChem with OpenMPI, install
mrchem=*=*openmpi* insted of just mrchem. A binary package compiled against MPICH is also available:
mrchem=*=*mpich*.
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Single compute

Calculations in QCEngine are defined in Python scripts. For example, the following runs MRChem to obtain the energy
of water:

import qcelemental as qcel
import qcengine as qcng

mol = qcel.models.Molecule(geometry=[[0, 0, 0], [0, 1.5, 0], [0, 0, 1.5]],
symbols=["O", "H", "H"],
connectivity=[[0, 1, 1], [0, 2, 1]])

print(mol)

computation = {
"molecule": mol,
"driver": "energy",
"model": {"method": "HF"},
"keywords": {"world_prec": 1.0e-3},

}
ret = qcng.compute(computation, "mrchem")

print(f"E_HF = {ret.return_result} Hartree")

You can save this sample as mrchem-run-hf.py and execute it with:

python mrchem-run-hf.py

Which will print to screen:

Molecule(name='H2O', formula='H2O', hash='b41d0c5')
E_HF = -75.9789291596064 Hartree

Note that:

1. The molecule is specified, in Angstrom, using a QCElemental object.

2. The computation is described using a Python dictionary.

3. The driver selects the kind of calculation you want to run with MRChem. Available drivers are:

• energy, for single-point energy calculations.

• gradient, for evaluation of the molecular gradient at a given geometry.

• properties, for the calculation of molecular properties.

4. The model selects the wavefunction: HF for Hartree-Fock and any of the DFT functionals known to MRChem
for a corresponding DFT calculation.

5. The keywords key in the dictionary accepts a dictionary of MRChem options. Any of the options in the usual
input file are recognized.

Once you have a dictionary defining your computation, you can run it with:

ret = qcng.compute(computation, "mrchem")

You can reuse the same dictionary with multiple computational engine, e.g. other quantum chemistry programs that
are recognized as executors by QCEngine. The return value from the compute function contains all data produced
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during the calculation in QCSchema format including, for example, the execution time elapsed. The full JSON output
produced by MRChem is also available and can be inspected in Python as:

mrchem_json_out = ret.extras["raw_output"]["output"]

The full, human-readable input is saved as the stdout property of the object returned by compute.

Parallelism

QCEngine allows you to exploit available parallel hardware. For example, to use 20 OpenMP threads in your MRChem
calculation you would provide an additional task configuration dictionary as a task_config argument to compute:

ret = qcng.compute(
computation,
"mrchem",
task_config={"ncores": 20})

You can inspect how the job was launched by printing out the provenance dictionary:

print(ret.extras["raw_output"]["output"]["provenance"])

{
"creator": "MRChem",
"mpi_processes": 1,
"routine": "/home/roberto/miniconda3/envs/mrchem-qcng/bin/mrchem.x",
"total_cores": 1,
"version": "1.1.0",
"ncores": 12,
"nnodes": 1,
"ranks_per_node": 1,
"cores_per_rank": 12,
"total_ranks": 1
}

It is also possible to run MPI-parallel and hybrid MPI+OpenMP jobs. Assuming that you installed the MPICH version
of the MRChem MPI-parallel Conda package, the basic task_config argument to compute would look like:

task = {
"nnodes": 1, # number of nodes
"ncores": 12, # number of cores per task on each node
"cores_per_rank": 6, # number of cores per MPI rank
"use_mpiexec": True, # launch with MPI
"mpiexec_command": "mpiexec -n {total_ranks}", # the invocation of MPI

}

This task configuration will launch a MPI job with 2 ranks on a single node. Each rank has access to 6 cores for
OpenMP parallelization. The provenance dictionary now shows:

{
"creator": "MRChem",
"mpi_processes": 2,
"routine": "mpiexec -n 2 /home/roberto/miniconda3/envs/mrchem-qcng/bin/mrchem.x",
"total_cores": 12,

(continues on next page)
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(continued from previous page)

"version": "1.1.0",
"ncores": 12,
"nnodes": 1,
"ranks_per_node": 2,
"cores_per_rank": 6,
"total_ranks": 2
}

The mpiexec_command is a string that will be interpolated to provide the exact invocation. In the above example,
MRChem will be run with:

mpiexec -n 2 /home/roberto/miniconda3/envs/mrchem-qcng/bin/mrchem.x

The following interpolation parameters are understood by QCEngine when creating the MPI invocation:

• {nnodes}: number of nodes.

• {cores_per_rank}: number of cores to use for each MPI rank.

• {ranks_per_node}: number of MPI ranks per node. Computed as ncores // cores_per_rank.

• {total_ranks}: total number of MPI ranks. Computed as nnodes * ranks_per_node.

More complex MPI invocations are possible by setting the appropriate mpiexec_command in the task configuration.
For usage with a scheduler, such as SLURM, you should refer to the documentation of your computing cluster and the
documentation of QCEngine.

Geometry optimizations

Running geometry optimizations is just as easy as single compute. The following example optimizes the structure of
water using the SVWN5 functional with MW4. The geomeTRIC package is used as optimization driver, but pyberny
or optking would also work.

Warning: The computation of the molecular gradient can be affected by significant numerical noise for MW3 and
MW4, to the point that it can be impossible to converge a geometry optimization. Using a tighter precision might
help, but the cost of the calculation might be prohibitively large.

import qcelemental as qcel
import qcengine as qcng

mol = qcel.models.Molecule(
geometry=[

[ 0.29127930, 3.00875625, 0.20308515],
[-1.21253048, 1.95820900, 0.10303324],
[ 0.10002049, 4.24958115,-1.10222079]

],
symbols=["O", "H", "H"],
fix_com=True,
fix_orientation=True,
fix_symmetry="c1")

opt_input = {
(continues on next page)
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"keywords": {
"program": "mrchem",
"maxiter": 70

},
"input_specification": {

"driver": "gradient",
"model": {

"method": "SVWN5",
},
"keywords": {

"world_prec": 1.0e-4,
"SCF": {

"guess_type": "core_dz",
}

}
},
"initial_molecule": mol,

}

opt = qcng.compute_procedure(
opt_input,
"geometric",
task_config={"ncores": 20})

print(opt.stdout)

print("==> Optimized geometry <==")
print(opt.final_molecule.pretty_print())

print("==> Optimized geometric parameters <==")
for m in [[0, 1], [0, 2], [1, 0, 2]]:

opt_val = opt.final_molecule.measure(m)
print(f"Internal degree of freedom {m} = {opt_val:.3f}")

Running this script will print all the steps taken during the structural optimization. The final printout contains the
optimized geometry:

Geometry (in Angstrom), charge = 0.0, multiplicity = 1:

Center X Y Z
------------ ----------------- ----------------- -----------------
O -4.146209038013 2.134923126314 -3.559202294678
H -4.906566693905 1.536801624016 -3.587431156799
H -4.270830051398 2.773072094238 -4.275607223691

and the optimized values of bond distances and bond angle:

Internal degree of freedom [0, 1] = 1.829
Internal degree of freedom [0, 2] = 1.828
Internal degree of freedom [1, 0, 2] = 106.549
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2.2.5 Program input/output file

Input schema

"input": {
"schema_name": string, # Name of the input schema
"schema_version": int, # Version of the input schema
"molecule": { # Section for Molecule specification
"charge": int, # Total molecular charge
"multiplicity": int, # Total spin multiplicity
"coords": array[ # Array of atoms

{ # (one entry per atom)
"atom": string, # Atomic symbol
"xyz": array[float] # Nuclear Cartesian coordinate

}
],
"cavity": {
"spheres": array[ # Array of cavity spheres

{ # (one entry per sphere)
"center": array[float], # Cartesian coordinate of sphere center
"radius": float # Radius of cavity sphere
"alpha": float # Scaling factor of radius
"beta": float # Scaling factor of width
"sigma": float # Width of cavity boundary

}
],

}
},
"mpi": { # Section for MPI specification
"bank_size": int, # Number of MPI ranks in memory bank
"numerically_exact": bool, # Guarantee MPI invariant results
"shared_memory_size": int # Size (MB) of MPI shared memory blocks

},
"mra": { # Section for MultiResolution Analysis
"basis_type": string, # Basis type (interpolating/legendre)
"basis_order": int, # Polynomial order of basis
"max_scale": int, # Maximum level of refinement
"min_scale": int, # Minimum level of refinement (root scale)
"boxes": array[int], # Number of root boxes
"corner": array[int] # Translation of first root box

},
"printer": { # Section for printed output
"file_name": string, # Name of output file
"print_level": int, # Amount of printed output
"print_mpi": bool, # Use separate output file for each MPI
"print_prec": int, # Number of digits for printed output
"print_width": int # Line width of printed output

},
"scf_calculation": { # Section for SCF specification
"fock_operator": { # Contributions to Fock operator
"kinetic_operator": { # Add Kinetic operator to Fock
"derivative": string # Type of derivative operator

},
(continues on next page)
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(continued from previous page)

"nuclear_operator": { # Add Nuclear operator to Fock
"proj_prec": float, # Projection prec for potential
"smooth_prec": float, # Smoothing parameter for potential
"shared_memory": bool # Use shared memory for potential

},
"coulomb_operator": { # Add Coulomb operator to Fock
"poisson_prec": float, # Build prec for Poisson operator
"shared_memory": bool # Use shared memory for potential

},
"exchange_operator": { # Add Exchange operator to Fock
"poisson_prec": float, # Build prec for Poisson operator
"screen": bool # Use screening in Exchange operator

},
"reaction_operator": { # Add Reaction operator to Fock
"poisson_prec": float, # Precision for Poisson operator
"kain": int, # Length of KAIN history in nested SCRF␣

→˓procedure
"max_iter": int, # Maximum number of iterations in nested␣

→˓SCRF procedure
"optimizer": string, # Use density or potential in KAIN solver
"dynamic_thrs": bool, # Use static or dynamic convergence␣

→˓threshold
"density_type": string, # Type of charge density [total, nuclear,␣

→˓electronic]
"epsilon_in": float, # Permittivity inside the cavity
"epsilon_out": float, # Permittivity outside the cavity
"formulation": string # Formulation of the permittivity function

},
"xc_operator": { # Add XC operator to Fock
"shared_memory": bool, # Use shared memory for potential
"xc_functional": { # XC functional specification
"spin": bool, # Use spin separated functional
"cutoff": float, # Cutoff value for small densities
"functionals": array[ # Array of density functionals
{
"coef": float, # Numerical coefficient
"name": string # Functional name

}
]

}
},
"external_operator": { # Add external field operator to Fock
"electric_field": array[float], # Electric field vector
"r_O": array[float] # Gauge orgigin for electric field

}
},
"initial_guess": { # Initial guess specification
"type": string, # Type of initial guess
"prec": float, # Precision for initial guess
"zeta": int, # Zeta quality for AO basis
"method": string, # Name of method for initial energy
"localize": bool, # Use localized orbitals

(continues on next page)
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"restricted": bool, # Use spin restricted orbitals
"relativity": string, # Name of relativistic method
"screen": float, # Screening used in GTO evaluations
"file_chk": string, # Path to checkpoint file
"file_basis": string, # Path to GTO basis file
"file_gto_a": string, # Path to GTO MO file (alpha)
"file_gto_b": string, # Path to GTO MO file (beta)
"file_gto_p": string, # Path to GTO MO file (paired)
"file_phi_a": string, # Path to MW orbital file (alpha)
"file_phi_b": string, # Path to MW orbital file (beta)
"file_phi_p": string, # Path to MW orbital file (paired)
"file_CUBE_a": str, # Path to CUBE orbital file (alpha)
"file_CUBE_b": str, # Path to CUBE orbital file (beta)
"file_CUBE_p": str # Path to CUBE orbital file (paired)

},
"scf_solver": { # SCF solver specification
"kain": int, # Length of KAIN history
"max_iter": int, # Maximum number of iterations
"method": string, # Name of electronic structure method
"relativity": string, # Name of relativistic method
"rotation": int, # Iterations between localize/diagonalize
"localize": bool, # Use localized orbitals
"checkpoint": bool, # Save checkpoint file
"file_chk": string, # Name of checkpoint file
"start_prec": float, # Start precision for solver
"final_prec": float, # Final precision for solver
"helmholtz_prec": float, # Precision for Helmholtz operators
"orbital_thrs": float, # Convergence threshold orbitals
"energy_thrs":float # Convergence threshold energy

},
"properties": { # Collection of properties to compute
"dipole_moment": { # Collection of dipole moments

id (string): { # Unique id: 'dip-${number}'
"precision": float, # Operator precision
"operator": string, # Operator used for property
"r_O": array[float] # Operator gauge origin

}
},
"quadrupole_moment": { # Collection of quadrupole moments

id (string): { # Unique id: 'quad-${number}'
"precision": float, # Operator precision
"operator": string, # Operator used for property
"r_O": array[float] # Operator gauge origin

}
},
"geometric_derivative": { # Collection of geometric derivatives

id (string): { # Unique id: 'geom-${number}'
"precision": float, # Operator precision
"operator": string, # Operator used for property
"smooth_prec": float # Smoothing parameter for potential

}
}

(continues on next page)
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},
"plots": { # Collection of plots to perform
"density": bool, # Plot converged densities
"orbitals": array[int], # List of orbitals to plot
"plotter": { # Section specifying plotting parameters
"path": string, # Path to output files
"type": string, # Type of plot (line, surf or cube)
"points": array[int], # Number of points in each direction
"O": array[float], # Plotting range origin
"A": array[float], # Plotting range A vector
"B": array[float], # Plotting range B vector
"C": array[float] # Plotting range C vector

}
},
"rsp_calculations": { # Collection of response calculations
id (string): { # Response id: e.g. 'ext_el-${frequency}'
"dynamic": bool, # Use dynamic response solver
"frequency": float, # Perturbation frequency
"perturbation": { # Perturbation operator
"operator": string # Operator used in response calculation

},
"components": array[ # Array of perturbation components
{ # (one per Cartesian direction)
"initial_guess": { # Initial guess specification
"type": string, # Type of initial guess
"prec": float, # Precision for initial guess
"file_chk_x": string, # Path to checkpoint file for X
"file_chk_y": string, # Path to checkpoint file for Y
"file_x_a": string, # Path to MW file for X (alpha)
"file_x_b": string, # Path to MW file for X (beta)
"file_x_p": string, # Path to MW file for X (paired)
"file_y_a": string, # Path to MW file for Y (alpha)
"file_y_b": string, # Path to MW file for Y (beta)
"file_y_p": string # Path to MW file for Y (paired)

},
"rsp_solver": { # Response solver specification
"kain": int, # Length of KAIN history
"max_iter": int, # Maximum number of iterations
"method": string, # Name of electronic structure method
"checkpoint": bool, # Save checkpoint file
"file_chk_x": string, # Name of X checkpoint file
"file_chk_y": string, # Name of Y checkpoint file
"orth_prec": float, # Precision for orthogonalization
"start_prec": float, # Start precision for solver
"final_prec": float, # Final precision for solver
"helmholtz_prec": float, # Precision for Helmholtz operators
"orbital_thrs": float, # Convergence threshold orbitals
"property_thrs": float # Convergence threshold property

}
}

],
"properties": { # Collection of properties to compute

(continues on next page)
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"polarizability": { # Collection of polarizabilities
id (string): { # Unique id: 'pol-${frequency}'
"precision": float, # Operator precision
"operator": string, # Operator used for property
"r_O": array[float] # Operator gauge origin

}
},
"magnetizability": { # Collection of magnetizabilities

id (string): { # Unique id: 'mag-${frequency}'
"frequency": float, # Perturbation frequency
"precision": float, # Operator precision
"dia_operator": string, # Operator used for diamagnetic property
"para_operator": string, # Operator used for paramagnetic property
"derivative": string, # Operator derivative type
"r_O": array[float] # Operator gauge origin

}
},
"nmr_shielding": { # Collection of NMR shieldings

id (string): { # Unique id: 'nmr-${nuc_idx}${atom_symbol}'
"precision": float, # Operator precision
"dia_operator": string, # Operator used for diamagnetic property
"para_operator": string, # Operator used for paramagnetic property
"derivative": string, # Operator derivative type
"smoothing": float, # Operator smoothing parameter
"r_O": array[float], # Operator gauge origin
"r_K": array[float] # Nuclear coordinate

}
}

},
"fock_operator": { # Contributions to perturbed Fock operator
"coulomb_operator": { # Add Coulomb operator to Fock
"poisson_prec": float, # Build prec for Poisson operator
"shared_memory": bool # Use shared memory for potential

},
"exchange_operator": { # Add Exchange operator to Fock
"poisson_prec": float, # Build prec for Poisson operator
"screen": bool # Use screening in Exchange operator

},
"xc_operator": { # Add XC operator to Fock
"shared_memory": bool, # Use shared memory for potential
"xc_functional": { # XC functional specification
"spin": bool, # Use spin separated functional
"cutoff": float, # Cutoff value for small densities
"functionals": array[ # Array of density functionals
{
"coef": float, # Numerical coefficient
"name": string # Functional name

}
]

}
}

},

(continues on next page)
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"unperturbed": { # Section for unperturbed part of response
"prec": float, # Precision used for unperturbed system
"localize": bool, # Use localized unperturbed orbitals
"fock_operator": { # Contributions to unperturbed Fock operator
"kinetic_operator": { # Add Kinetic operator to Fock
"derivative": string # Type of derivative operator

},
"nuclear_operator": { # Add Nuclear operator to Fock
"proj_prec": float, # Projection prec for potential
"smooth_prec": float, # Smoothing parameter for potential
"shared_memory": bool # Use shared memory for potential

},
"coulomb_operator": { # Add Coulomb operator to Fock
"poisson_prec": float, # Build prec for Poisson operator
"shared_memory": bool # Use shared memory for potential

},
"exchange_operator": { # Add Exchange operator to Fock
"poisson_prec": float, # Build prec for Poisson operator
"screen": bool # Use screening in Exchange operator

},
"xc_operator": { # Add XC operator to Fock
"shared_memory": bool, # Use shared memory for potential
"xc_functional": { # XC functional specification
"spin": bool, # Use spin separated functional
"cutoff": float, # Cutoff value for small densities
"functionals": array[ # Array of density functionals
{
"coef": float, # Numerical coefficient
"name": string # Functional name

}
]

}
},
"external_operator": { # Add external field operator to Fock
"electric_field": array[float], # Electric field vector
"r_O": array[float] # Gauge orgigin for electric field

}
}

}
}

},
"constants": { # Physical constants used throughout MRChem
"angstrom2bohrs": float, # Conversion factor from Angstrom to Bohr
"dipmom_au2debye": float, # Conversion factor from atomic units to␣

→˓Debye
"electron_g_factor": float, # Electron g factor in atomic units
"fine_structure_constant": float, # Fine-structure constant in atomic units
"hartree2ev": float, # Conversion factor from Hartree to eV
"hartree2kcalmol": float, # Conversion factor from Hartree to kcal/mol
"hartree2kjmol": float, # Conversion factor from Hartree to kJ/mol
"hartree2simagnetizability": float, # Conversion factor from Hartree to J T^-2
"hartree2wavenumbers": float, # Conversion factor from Hartree to cm^-1

(continues on next page)
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"light_speed": float # Speed of light in vacuo in atomic units
}

}

Output schema

"output": {
"success": bool, # Whether all requested calculations␣

→˓succeeded
"schema_name": string, # Name of the output schema
"schema_version": int, # Version of the output schema
"provenance": { # Information on how the results were␣

→˓obtained
"creator": string, # Program name
"version": string, # Program version
"nthreads": int, # Number of OpenMP threads used
"mpi_processes": int, # Number of MPI processes used
"total_cores": int, # Total number of cores used
"routine": string # The function that generated the output

},
"properties": { # Collection of final properties
"charge": int, # Total molecular charge
"multiplicity": int, # Total spin multiplicity
"center_of_mass": array[float], # Center of mass coordinate
"geometry": array[ # Array of atoms
{ # (one entry per atom)
"symbol": string, # Atomic symbol
"xyz": array[float] # Cartesian coordinate

}
],
"orbital_energies": { # Collection of orbital energies
"spin": array[string], # Array of spins ('p', 'a' or 'b')
"energy": array[float], # Array of energies
"occupation": array[int], # Array of orbital occupations
"sum_occupied": float # \sum_i occupation[i]*energy[i]

},
"scf_energy": { # Collection of energy contributions
"E_kin": float, # Kinetic energy
"E_nn": float, # Classical nuclear-nuclear interaction
"E_en": float, # Classical electron-nuclear interaction
"E_ee": float, # Classical electron-electron interaction
"E_next": float, # Classical nuclear-external field␣

→˓interaction
"E_eext": float, # Classical electron-external field␣

→˓interaction
"E_x": float, # Hartree-Fock exact exchange energy
"E_xc": float, # DFT exchange-correlation energy
"E_el": float, # Sum of electronic contributions
"E_nuc": float, # Sum of nuclear contributions
"E_tot": float, # Sum of all contributions

(continues on next page)
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"Er_el": float, # Electronic reaction energy
"Er_nuc": float, # Nuclear reaction energy
"Er_tot": float # Sum of all reaction energy contributions

},
"dipole_moment": { # Collection of electric dipole moments

id (string): { # Unique id: 'dip-${number}'
"r_O": array[float], # Gauge origin vector
"vector": array[float], # Total dipole vector
"vector_el": array[float], # Electronic dipole vector
"vector_nuc": array[float], # Nuclear dipole vector
"magnitude": float # Magnitude of total vector

}
},
"quadrupole_moment": { # Collection of electric quadrupole moments
id (string): { # Unique id: 'quad-${number}'
"r_O": array[float], # Gauge origin vector
"tensor": array[float], # Total quadrupole tensor
"tensor_el": array[float], # Electronic quadrupole tensor
"tensor_nuc": array[float] # Nuclear quadrupole tensor

}
},
"polarizability": { # Collection of polarizabilities
id (string): { # Unique id: 'pol-${frequency}'
"frequency": float, # Perturbation frequency
"r_O": array[float], # Gauge origin vector
"tensor": array[float], # Full polarizability tensor
"isotropic_average": float # Diagonal average

}
},
"magnetizability": { # Collection of magnetizability
id (string): { # Unique id: 'mag-${frequency}'
"frequency": float, # Perturbation frequency
"r_O": array[float], # Gauge origin vector
"tensor": array[float], # Full magnetizability tensor
"tensor_dia": array[float], # Diamagnetic tensor
"tensor_para": array[float], # Paramagnetic tensor
"isotropic_average": float # Diagonal average

}
},
"nmr_shielding": { # Collection of NMR shielding tensors
id (string): { # Unique id: 'nmr-${nuc_idx}+${atom_symbol}'
"r_O": array[float], # Gauge origin vector
"r_K": array[float], # Nuclear coordinate vector
"tensor": array[float], # Full NMR shielding tensor
"tensor_dia": array[float], # Diamagnetic tensor
"tensor_para": array[float], # Paramagnetic tensor
"diagonalized_tensor": array[float], # Diagonalized tensor used for (an)isotropy
"isotropic_average": float, # Diagonal average
"anisotropy": float # Anisotropy of tensor

}
},
"geometric_derivative": { # Collection of geometric derivatives

(continues on next page)
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id (string): { # Unique id: 'geom-${number}'
"electronic": array[float], # Electronic component of the geometric␣

→˓derivative
"electronic_norm": float, # Norm of the electronic component of the␣

→˓geoemtric derivative
"nuclear": array[float], # Nuclear component of the geometric␣

→˓derivative
"nuclear_norm": float, # Norm of the nuclear component of the␣

→˓geometric derivative
"total": array[float], # Geometric derivative
"total_norm": float # Norm of the geometric derivative

}
}

},
"scf_calculation": { # Ground state SCF calculation
"success": bool, # SCF finished successfully
"initial_energy": { # Energy computed from initial orbitals
"E_kin": float, # Kinetic energy
"E_nn": float, # Classical nuclear-nuclear interaction
"E_en": float, # Classical electron-nuclear interaction
"E_ee": float, # Classical electron-electron interaction
"E_next": float, # Classical nuclear-external field␣

→˓interaction
"E_eext": float, # Classical electron-external field␣

→˓interaction
"E_x": float, # Hartree-Fock exact exchange energy
"E_xc": float, # DFT exchange-correlation energy
"E_el": float, # Sum of electronic contributions
"E_nuc": float, # Sum of nuclear contributions
"E_tot": float, # Sum of all contributions
"Er_el": float, # Electronic reaction energy
"Er_nuc": float, # Nuclear reaction energy
"Er_tot": float # Sum of all reaction energy contributions

},
"scf_solver": { # Details from SCF optimization
"converged": bool, # Optimization converged
"wall_time": float, # Wall time (sec) for SCF optimization
"cycles": array[ # Array of SCF cycles
{ # (one entry per cycle)
"energy_total": float, # Current total energy
"energy_update": float, # Current energy update
"mo_residual": float, # Current orbital residual
"wall_time": float, # Wall time (sec) for SCF cycle
"energy_terms": { # Energy contributions
"E_kin": float, # Kinetic energy
"E_nn": float, # Classical nuclear-nuclear interaction
"E_en": float, # Classical electron-nuclear interaction
"E_ee": float, # Classical electron-electron interaction
"E_next": float, # Classical nuclear-external field␣

→˓interaction
"E_eext": float, # Classical electron-external field␣

→˓interaction
(continues on next page)
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"E_x": float, # Hartree-Fock exact exchange energy
"E_xc": float, # DFT exchange-correlation energy
"E_el": float, # Sum of electronic contributions
"E_nuc": float, # Sum of nuclear contributions
"E_tot": float, # Sum of all contributions
"Er_el": float, # Electronic reaction energy
"Er_nuc": float, # Nuclear reaction energy
"Er_tot": float # Sum of all reaction energy contributions

}
}

]
}

},
"rsp_calculations": { # Collection of response calculations
id (string): { # Response id: e.g. 'ext_el-${frequency}'
"success": bool, # Response finished successfully
"frequency": float, # Frequency of perturbation
"perturbation": string, # Name of perturbation operator
"components": array[ # Array of operator components

{ # (one entry per Cartesian direction)
"rsp_solver": { # Details from response optimization
"wall_time": float, # Wall time (sec) for response calculation
"converged": bool, # Optimization converged
"cycles": array[ # Array of response cycles
{ # (one entry per cycle)
"symmetric_property": float, # Property computed from perturbation␣

→˓operator
"property_update": float, # Current symmetric property update
"mo_residual": float, # Current orbital residual
"wall_time": float # Wall time (sec) for response cycle

}
]

}
}

]
}

}
}

2.3 Programmer’s Manual

2.3.1 Classes and functions reference

Chemistry

Classes for the chemistry overlay
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Environment

Classes for the solvent environment overlay

Cavity

class Cavity : public mrcpp::RepresentableFunction<3>
Interlocking spheres cavity centered on the nuclei of the molecule. The Cavity class represents the following
function Fosso-Tande2013.

𝐶(r) = 1−
𝑁∏︁
𝑖=1

(1− 𝐶𝑖(r))

𝐶𝑖(r) = 1− 1

2

(︂
1 + erf

(︂
|r− r𝑖| −𝑅𝑖

𝜎𝑖

)︂)︂

where r is the coordinate of a point in 3D space, r𝑖 is the coordinate of the i-th nucleus, 𝑅𝑖 is the radius of the
i-th sphere, and 𝜎𝑖 is the width of the transition between the inside and outside of the cavity. The transition has
a sigmoidal shape, such that the boundary is a smooth function instead of sharp boundaries often seen in other
continuum models. This function is 1 inside and 0 outside the cavity.

The radii are computed as:

𝑅𝑖 = 𝛼𝑖𝑅0,𝑖 + 𝛽𝑖𝜎𝑖

where:

• 𝑅0,𝑖 is the atomic radius. By default, the van der Waals radius.
• 𝛼𝑖 is a scaling factor. By default, 1.1
• 𝛽𝑖 is a width scaling factor. By default, 0.5
• 𝜎𝑖 is the width. By default, 0.2

Public Functions

Cavity(const std::vector<mrcpp::Coord<3>> &coords, const std::vector<double> &R, const
std::vector<double> &alphas, const std::vector<double> &betas, const std::vector<double> &sigmas)

Initializes the members of the class and constructs the analytical gradient vector of the Cavity.

Cavity(const std::vector<mrcpp::Coord<3>> &coords, const std::vector<double> &R, double sigma)
Initializes the members of the class and constructs the analytical gradient vector of the Cavity.

This CTOR applies a single width factor to the cavity and does not modify the radii. That is, in the formula:

𝑅𝑖 = 𝛼𝑖𝑅0,𝑖 + 𝛽𝑖𝜎𝑖

for every atom 𝑖, 𝛼𝑖 = 1.0 and 𝛽𝑖 = 0.0.
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double evalf(const mrcpp::Coord<3> &r) const override
Evaluates the value of the cavity at a 3D point r.

Parameters
r – coordinate of 3D point at which the Cavity is to be evaluated at.

Returns
double value of the Cavity at point r

inline std::vector<mrcpp::Coord<3>> getCoordinates() const
Returns centers.

inline std::vector<double> getOriginalRadii() const
Returns radii_0.

inline std::vector<double> getRadii() const
Returns radii.

inline std::vector<double> getRadiiScalings() const
Returns alphas.

inline std::vector<double> getWidths() const
Returns sigmas.

inline std::vector<double> getWidthScalings() const
Returns betas.

Protected Attributes

std::vector<double> radii_0
Contains the unscaled radius of each sphere in #Center.

std::vector<double> alphas
The radius scaling factor for each sphere.

std::vector<double> betas
The width scaling factor for each sphere.

std::vector<double> sigmas
The width for each sphere.

std::vector<double> radii
Contains the radius of each sphere in #Center. 𝑅𝑖 = 𝛼𝑖𝑅0,𝑖 + 𝛽𝑖𝜎𝑖.

std::vector<mrcpp::Coord<3>> centers
Contains each of the spheres centered on the nuclei of the Molecule.
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Related

auto gradCavity(const mrcpp::Coord<3> &r, int index, const std::vector<mrcpp::Coord<3>> &centers, const
std::vector<double> &radii, const std::vector<double> &widths) -> double

Constructs a single element of the gradient of the Cavity.

This constructs the analytical partial derivative of the Cavity 𝐶 with respect to 𝑥, 𝑦 or 𝑧 coordinates and
evaluates it at a point r. This is given for 𝑥 by

𝜕𝐶 (r)

𝜕𝑥
= (1− 𝐶(r))

𝑁∑︁
𝑖=1

− (𝑥− 𝑥𝑖) 𝑒
− si

2 (r)

𝜎2

√
𝜋𝜎

(︁
0.5 erf

(︁
si (r)
𝜎

)︁
+ 0.5

)︁
|r− r𝑖|

where the subscript 𝑖 is the index related to each sphere in the cavity, and s is the signed normal distance
from the surface of each sphere.

Parameters
• r – The coordinates of a test point in 3D space.
• index – An integer that defines the variable of differentiation (0->x, 1->z and

2->z).
• centers – A vector containing the coordinates of the centers of the spheres in

the cavity.
• radii – A vector containing the radii of the spheres.
• width – A double value describing the width of the transition at the boundary of

the spheres.
Returns

A double number which represents the value of the differential (w.r.t. x, y or z) at point
r.

Permittivity

class Permittivity : public mrcpp::RepresentableFunction<3>
Permittivity function related to a substrate molecule and a solvent continuum. The Permittivity class represents
the following function Fosso-Tande2013.

𝜖(r) = 𝜖𝑖𝑛 exp

(︂(︂
log

𝜖𝑜𝑢𝑡
𝜖𝑖𝑛

)︂
(1− 𝐶(r))

)︂
where r is the coordinate of a point in 3D space, 𝐶 is the cavity function of the substrate, and 𝜖𝑖𝑛 and 𝜖𝑜𝑢𝑡 are
the dielectric constants describing, respectively, the permittivity inside and outside the cavity of the substrate.

Public Functions

Permittivity(const Cavity cavity, double epsilon_in, double epsilon_out, std::string formulation)
Standard constructor. Initializes the cavity, epsilon_in and epsilon_out with the input parameters.

Parameters
• cavity – interlocking spheres of Cavity class.
• epsilon_in – permittivity inside the cavity.
• epsilon_out – permittivity outside the cavity.
• formulation – Decides which formulation of the Permittivity function to im-

plement, only exponential available as of now.
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double evalf(const mrcpp::Coord<3> &r) const override
Evaluates Permittivity at a point in 3D space with respect to the state of inverse.

Parameters
r – coordinates of a 3D point in space.

Returns
1

𝜖(r) if inverse is true, and 𝜖(r) if inverse is false.

inline void flipFunction(bool is_inverse)
Changes the value of inverse.

inline auto isInverse() const
Returns the current state of inverse.

inline auto getCoordinates() const
Calls the Cavity::getCoordinates() method of the cavity instance.

inline auto getRadii() const
Calls the Cavity::getRadii() method of the cavity instance.

inline auto getGradVector() const
Calls the Cavity::getGradVector() method of the cavity instance.

inline auto getEpsIn() const
Returns the value of epsilon_in.

inline auto getEpsOut() const
Returns the value of epsilon_out.

inline Cavity getCavity() const
Returns the cavity.

inline std::string getFormulation() const
Returns the formulation.

void printParameters() const
Print parameters.

Private Members

bool inverse = false
State of evalf .

double epsilon_in
Dielectric constant describing the permittivity of free space.

double epsilon_out
Dielectric constant describing the permittivity of the solvent.

std::string formulation
Formulation of the permittivity function, only exponential is used as of now.

Cavity cavity
A Cavity class instance.
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SCRF

class SCRF
class that performs the computation of the ReactionPotential, named Self Consistent Reaction Field.

Private Members

mrcpp::FunctionTreeVector<3> d_cavity
Vector containing the 3 partial derivatives of the cavity function.

Initial Guess

Classes providing the initial guess of the orbitals

Properties

Classes for the calculation of molecular properties

Quantum Mechanical Functions

Classes to handle quantum mechanical functions such as electronic density, molecular orbitals.

QMOperators

The classes that implement quantum mechanical operators

QMPotential

class QMPotential
Operator defining a multiplicative potential.

Inherits the general features of a complex function from QMFunction and implements the multiplication of this
function with an Orbital. The actual function representing the operator needs to be implemented in the derived
classes, where the *re and *im FunctionTree pointers should be assigned in the setup() function and deallocated
in the clear() function.

XCOperator

class XCOperator
DFT Exchange-Correlation operator containing a single XCPotential.

This class is a simple TensorOperator realization of
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XCPotential

class XCPotential
Exchange-Correlation potential defined by a particular (spin) density.

The XC potential is computed by mapping of the density through a XC functional, provided by the XCFun library.
There are two ways of defining the density:

1) Use getDensity() prior to setup() and build the density as you like. 2) Provide a default set of orbitals in the
constructor that is used to compute the density on-the-fly in setup().

If a set of orbitals has NOT been given in the constructor, the density MUST be explicitly computed prior to
setup(). The density will be computed on-the-fly in setup() ONLY if it is not already available. After setup() the
operator will be fixed until clear(), which deletes both the density and the potential.

LDA and GGA functionals are supported as well as two different ways to compute the XC potentials: either with
explicit derivatives or gamma-type derivatives.

ReactionPotential

class ReactionPotential : public mrchem::QMPotential
class containing the solvent-substrate interaction reaction potential obtained by solving

∆𝑉𝑅 = −4𝜋

(︂
𝜌
1− 𝜖

𝜖
+ 𝛾𝑠

)︂
where 𝜌 is the total molecular density of a solute molecule, 𝜖 is the Permittivity function of the continuum and
𝛾𝑠 is the surface charge distribution.

Public Functions

ReactionPotential(std::unique_ptr<SCRF> scrf_p, std::shared_ptr<mrchem::OrbitalVector> Phi_p)
Initializes the ReactionPotential class.

Parameters
• scrf_p – A SCRF instance which contains the parameters needed to compute

the ReactionPotential.
• Phi_p – A pointer to a vector which contains the orbitals optimized in the SCF

procedure.

inline void updateMOResidual(double const err_t)
Updates the helper.mo_residual member variable. This variable is used to set the convergence criterion in
the dynamic convergence method.
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Private Members

std::unique_ptr<SCRF> helper
A SCRF instance used to compute the ReactionPotential.

std::shared_ptr<mrchem::OrbitalVector> Phi
holds the Orbitals needed to compute the electronic density for the SCRF procedure.

SCF Solver

Classes for the resolution of the SCF equations of HF and DFT
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